博客
关于我
Objective-C实现markov chain马尔可夫链算法(附完整源码)
阅读量:792 次
发布时间:2023-02-19

本文共 3172 字,大约阅读时间需要 10 分钟。

Objective-C实现马尔可夫链(Markov Chain)算法的示例代码如下:

#import 
@interface MarkovChain : NSObject- (instancetype)initWithTransitionMatrix:(NSDictionary
*)matrix;- (NSDictionary
*>*)computeProbabilityDistributionForState:(NSString*)state;- (NSDictionary
*>*)computeProbabilityDistributionForInitialState;- (NSDictionary
*>*)computeProbabilityDistributionOverTime;- (NSDictionary
*>*)computeProbabilityDistributionForSteps:(NSInteger)steps;- (NSDictionary
*>*)computeProbabilityDistributionForStep:(NSInteger)step;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeries:(NSArray
*)timeSeries;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStep:(NSInteger)step;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithSteps:(NSInteger)steps;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStepsAndInitialState:(NSDictionary
*)initialState;- (NSDictionary
*>*)computeProbabilityDistributionForTimeSeriesWithStepsAndInitialStateWithStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialState:(NSDictionary
*)initialState;- (NSDictionary
*)simulateChainWithInitialStateAndSteps:(NSDictionary
*)initialState withSteps:(NSInteger)steps;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndStep:(NSDictionary
*)initialState withStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeries:(NSDictionary
*)initialState withTimeSeries:(NSArray
*)timeSeries;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeriesWithStep:(NSDictionary
*)initialState withStep:(NSInteger)step;- (NSDictionary
*)simulateChainWithInitialStateAndStepsAndTimeSeriesWithSteps:(NSDictionary
*)initialState withSteps:(NSInteger)steps;@end

在这个项目中,我们创建了一个名为MarkovChain的类,用于实现马尔可夫链算法。该类通过提供一个状态转移矩阵,可以计算出马尔可夫链模型下的概率分布。以下是类的主要方法:

  • initWithTransitionMatrix:

    • 初始化马尔可夫链模型,接受一个状态转移矩阵matrix作为参数。
    • 矩阵的键表示当前状态,值表示下一个状态的转移概率。
  • computeProbabilityDistributionForState:

    • 根据指定的状态计算其概率分布。
    • 适用于单步转移概率计算。
  • computeProbabilityDistributionForInitialState:

    • 计算初始状态下的概率分布。
    • 假设初始分布已知。
  • computeProbabilityDistributionOverTime:

    • 计算状态概率随时间变化的情况。
    • 适用于长期状态转移分析。
  • computeProbabilityDistributionForSteps:

    • 计算指定步数下的概率分布。
    • 适用于多步转移路径分析。
  • computeProbabilityDistributionForStep:

    • 计算单独指定步数下的概率分布。
  • computeProbabilityDistributionForTimeSeries:

    • 计算基于时间序列的概率分布。
    • 适用于时间序列数据分析。
  • computeProbabilityDistributionForTimeSeriesWithStep:

    • 计算基于指定步数的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithSteps:

    • 计算基于指定步数的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithStepsAndInitialState:

    • 计算基于指定步数和初始状态的时间序列概率分布。
  • computeProbabilityDistributionForTimeSeriesWithStepsAndInitialStateWithStep:

    • 计算基于指定步数、初始状态和单步转移的时间序列概率分布。
  • simulateChainWithInitialState:

    • 模拟马尔可夫链随机过程,返回最终状态分布。
  • simulateChainWithInitialStateAndSteps:

    • 模拟马尔可夫链随机过程,指定初始状态和步数。
  • simulateChainWithInitialStateAndStepsAndStep:

    • 模拟马尔可夫链随机过程,指定初始状态、步数和单步转移。
  • simulateChainWithInitialStateAndStepsAndTimeSeries:

    • 模拟基于时间序列的马尔可夫链随机过程。
  • simulateChainWithInitialStateAndStepsAndTimeSeriesWithStep:

    • 模拟基于指定步数和时间序列的马尔可夫链随机过程。
  • simulateChainWithInitialStateAndStepsAndTimeSeriesWithSteps:

    • 模拟基于指定步数和时间序列的马尔可夫链随机过程。
  • 该类方法可以灵活组合,适用于各种马尔可夫链模型的分析需求。

    转载地址:http://tlnfk.baihongyu.com/

    你可能感兴趣的文章
    noi 7827 质数的和与积
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2011T1 数字反转
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    NOIp模拟赛二十九
    查看>>
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>
    NOPI读取Excel
    查看>>
    NoSQL&MongoDB
    查看>>
    NoSQL介绍
    查看>>
    Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
    查看>>
    Notepad++在线和离线安装JSON格式化插件
    查看>>
    notepad++最详情汇总
    查看>>
    notepad如何自动对齐_notepad++怎么自动排版
    查看>>
    Notification 使用详解(很全
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    Now trying to drop the old temporary tablespace, the session hangs.
    查看>>
    nowcoder—Beauty of Trees
    查看>>
    np.arange()和np.linspace()绘制logistic回归图像时得到不同的结果?
    查看>>